Executive Summary:
Our first White Paper “Foundations for Transformation: Linking Purpose, People and Process” described the common patterns that we have observed as executives and managers have attempted to create a culture of continuous improvement in their organization. Many find themselves trapped in a cycle of “program of the month” approaches that never seem to produce the sustainable transformation of management. However, there are some who desire to break away from this pattern and wish to switch the direction of their efforts by understanding the power of purpose, as well as learning and practicing new principles of management.

In our tenth white paper “Side (by Side) Management” we described a more useful view of the traditional hierarchy model by rotating the “pyramid” view counter-clockwise by 90 degrees (Figure 1). We also discussed the implications for connecting strategy deployment to daily management in order to provide value to customers, as well as facilitating true knowledge creation in the organization.

This rotated view of the organization provides a useful context to better visualize the 3 primary systems that are often created in organizations that wish to create a culture of continuous improvement based on the guiding principles of enterprise excellence: 1) strategy development and deployment, 2) leader standard work, and 3) managing for daily improvement. See Figure 2. We explored the first of these systems in our eleventh white paper “The Pracademic’s Guide to Strategy Deployment.”

In this white paper, we will focus on the “managing for daily improvement” (MDI) system. We then turn our attention to the leader standard work system in our sixteenth white paper.

Figure 3 is a model of what an MDI system might look like. In this paper, we’ll describe how the reader might experiment to create a system that helps to manage for daily improvement.

We are indebted to a number of fellow “pracademics” who helped to share their experiences, thoughts and insights in this paper: Garrett Bean, Virginia Cosgriff, Ken Eakin, Sarah Groux, Jeff Hebbard, Holly Prast, Didier Rabino, David Rooney, Yvette Sena, Kathleen Sharp, Bryan Taylor, and Dirk van Rossum.

2 http://bit.ly/sidebysidemgmt2
3 http://bit.ly/PracGuidSD1
© Institute for Enterprise Excellence
1. Continuous Improvement Is Not an Event
A common method that is often used in organizations that wish to pursue a “continuous improvement” initiative is to convene teams of people around a particular problem or issue that they want to resolve. This is often called an “improvement event.” These are also sometimes referred to as “kaizen” events, workshops, or “rapid improvement events” (RIEs).

An improvement event often has these elements:
* A team of people who are freed up from their regular work to dedicate their full attention to a problem or issue for a period of time (one or more days).
* The team has representation from people with various roles (front-line, supervisor, manager) that represent a broad view of the problem (upstream and downstream to the area of focus). This might include people with no direct involvement who bring “outside eyes” as well as customers of the process being studied (internal and external customers).
* The team is usually sponsored by someone in senior management. This helps to raise the level of importance and credibility to the effort. Sometimes representatives from senior management are members of the team. They are there to learn how to improve processes and work right alongside of other team members.
* The improvement event is facilitated by someone who guides the team through a process of identifying the current state, framing the improvement effort, gathering data (including direct observation), formulating some ideas for improvement (countermeasures) and testing those ideas as quickly as possible (during the event).
* Many events include training that helps the participants increase their process improvement knowledge within the event.
* At the end of the event, the team will often “report out” to top management (as well as the organization at large) to share their work and to celebrate the effort and results.
* There is often a follow-up report-out in regular intervals (often 30, 60 and 90 days) to see if the improvements have been sustained.

Improvement events are common, and they have many beneficial outcomes. For instance, an event needs to be a helpful teaching method which allows people to immediately practice key improvement concepts. An improvement event can also be helpful when there are significant gaps that need immediate attention. Events are tools (tactical elements) that can be a useful component of a continuous improvement effort in an organization. We recognize the utility and usefulness of tools such as events in our IEX sustainability model (See Figure 4).

In our experience, tools alone will not result in a sustainable culture of continuous improvement. We discussed this in our first white paper-describing the phenomenon we call the “comfort of the comfort zone” (also known as the “flavor of the month” approach). It is very difficult, if not impossible, to sustain a culture of continuous improvement when the mental model is limited to “results through tools.” When improvement events are the primary approach to changing the culture, we’ve noted that the pace of improvement events can outpace the implementation of countermeasures. This often creates a backlog which produces strain on the improvement support resources. This also affects the perceived value of future events.

Figures 5 and 6 illustrate a common pattern we have seen with the use of improvement events as the primary tool to attempt to change a culture. Figure 5 illustrates the theory of improvement through the use of improvement events. We
have observed initial and sometimes substantial improvement through the use of an improvement event. This is sometimes viewed as a “breakthrough” improvement that takes the process or system to a substantially higher level of improvement. In addition to improvement events, this phenomenon seems to appear when there is a big strategic leap or a fundamental redesign in the way the work is carried out (e.g. transition from manual processes, to automated, or integration of computer-driven and dependent processes. The theory is that improvement stabilizes at the new level over time. The next level of improvement is achieved through another event.

Figure 6 illustrates how this tends to work in practice. In our experience (and in the experience of others in the lean community⁶), the improvement gains are not typically sustained at the new and improved level. What actually tends to occur is the degradation and deterioration of the improved results. What is really pernicious about this deterioration is that it often happens imperceptibly (in tiny increments every day) until the chaos gets so bad that no one can deny it any longer.⁷ The ultimate effect represents a see-saw pattern where overall improvement is not sustained. There are multiple potential causes for this phenomenon. Here are some we’ve noted:

1) Lack of connection to guiding principles of enterprise excellence.
2) Little reflection on how to spread or leverage outside of the department or value stream.
3) Little strategy around how the events connect to each other.
4) Lack of sufficient explanation of “why” the event is undertaken.
5) No connection to developing and driving ideal behaviors.
6) A change or transition in management.

Something else is also missing. One missing piece of the puzzle is the focus of this white paper – the “managing for daily improvement” system. Our sixteenth white paper⁵ addresses another key system – the “leader standard work” system.

Figure 7 illustrates the result of coupling breakthrough improvement from events with a “managing for daily improvement” (MDI) system. The “wedge” of MDI is inserted to minimize the back-sliding and degradation of improvement. The reader might recognize this wedge as seen in the lower right-hand corner of Figure 2.

2. The Managing for Daily Improvement System
This system has many familiar names and acronyms, such as Lean Management System (LMS), Front Line Improvement System and Daily Engagement System. We emphasize three words to illustrate how this is different than traditional management:

a) Managing – This is a “managing” system, which implies that someone is trying to accomplish specific things in an

⁶ James Womack in Foreword of The Work of Management, Jim Lancaster, 2017
⁷ Personal correspondence, Ken Eakin, Export Development Canada

© Institute for Enterprise Excellence
active and deliberate way. Dr. W. Edwards Deming would often comment, “A system will not manage itself.”\(^8\) Lean thinker James Womack put it this way, “All processes have a desperate desire to head towards chaos, to get worse fast, and the only thing standing in the way is management.”\(^9\) This implies that someone needs to attend to the system, monitor how it is performing, and make necessary adjustments accordingly. Managing any system requires constant attention and the infusion of energy, otherwise entropy will ensue. We’ll elaborate upon this in section 12 of this paper.

b) **Daily** – This system is active daily, every day and throughout the day. This means that the cadence or pulse of the system repeats with a regular cadence. This might include shift-to-shift (“shift-ly”\(^10\)) or throughout the day. This system might include “huddles,” but more importantly, what goes on between the huddles. Didier Rabino, Lean Sensei, offers these suggestions for three primary areas of focus:

1) Look for signals of process deterioration (lack of sustainment) from yesterday’s work. This means being reactive about recent problems.
2) Make a plan for this day (looking at supply, demand and process readiness). This means being proactive with the upcoming work.
3) Work toward improvement for tomorrow’s performance. This means being creative with opportunities for improvement.\(^11\)

The idea of “daily” improvement can sometimes be a point of resistance. It can be perceived as incremental, imperceptible and inconsequential by managers who tend to believe that the important improvement is the “BIG stuff” which tends to receive more notoriety and attention.\(^7\)

c) **Improvement** – Every true system must have an aim, and the aim of the MDI system is “improvement.” This distinguishes it from a “management” system which might merely maintain the status quo or react to problems that might occur. The following story helps to illustrate this point. We were visiting some companies in Japan. At one company, we noticed black arm bands being worn by some of the workers. When we asked about this, here is what we were told. “These workers are represented by a union and are on strike. They still come to work, but they are not improving the work.”\(^12\) In other words, “improving the work is also the work.”

It may be helpful to think about various levels of improvement: establishing stability, maintaining stability, incremental improvement and innovation. A daily management system can help to support all of these levels and types of improvement.\(^13\)

3. **MDI Structure and the IEX Velocity Model**

In our fourth white paper\(^14\), we briefly described the MDI system as an important part of initial experimentation by what is sometimes referred to as “model areas.” The structure around which we experiment comes from the IEX “velocity” model which was described in our 5\(^{th}\), 6\(^{th}\), and 7\(^{th}\) white papers\(^15\) and is illustrated in Figure 8. We also delved into this framework in our 8\(^{th}\) white paper “systems by design”.\(^16\)

A complete MDI system will have components (sub-systems) that help to “align” the local work of a department to the

\(^8\) A common remark at any Deming 4-Day Seminar
\(^9\) Personal correspondence, Bryan Taylor, York Hospital, Wellspan Health
\(^10\) Personal correspondence, Virginia Cosgriff, HealthEast
\(^11\) Personal correspondence, Didier Rabino, Lean Sensei
\(^12\) Multi-city and company bench-marking tour, Japan, 2003
\(^13\) Personal correspondence, Dirk van Rossum

© Institute for Enterprise Excellence
goals and strategies of the organization. In the beginning phase, it is common and beneficial to see teams make improvements in their work systems that address their pain points. Over time, it will be important to align the improvement efforts on the improvements that are most strongly connected to the strategically important goals.

A complete MDI system will also have components (sub-systems) that help to “enable” the people who are doing the work, to be fully involved and engaged. Finally, a complete MDI system will have components (sub-systems) that help the people who do the work to “improve” their work. In other words, improving the work is also the work. Figure 9 illustrates the basic framework or “skeleton” for designing and improving and MDI system. At the center of the triangle we have placed the local “work systems” that are being aligned, enabled and improved.

There is an interesting twist to this when this model is applied to education. In education, as in all service industries, the customer is also one of the key suppliers. In the realm of education, the primary work system IS the routine problem-solving system. Holly Prast, Assistant Superintendent at the Kimberly Areas School District describes it this way, “Our goal is to get students to routinely problem solve their learning. This needs to be supported by teachers routinely problem solving to create the conditions for that to happen, and how principals create the conditions for teachers to allow that to happen.”

How would you go about designing an MDI system? In our experience, this needs to be tackled “piece-by-piece” with an eye toward what you want to accomplish as a whole. People can become frozen when they take on the creation of a complete MDI system all at once. It may be beneficial to conduct initial experiments in the “enable” domain. It may be necessary to build trust within the work team. People need to design systems and tools that make sense for them, and not feel like the tools are being “dumped” into their lap. Team members need to see the ideal behaviors of leaders (their boss, and their boss’s boss). Leaders need to show a certain level of vulnerability to the team by saying “we don’t have all the answers, but we’re committed to learn together – with you.” This creates a different type of relationship that is one of mutual trust and respect. By connecting to the “enable” principles of enterprise excellence, the team is creating a foundation for expanding the MDI system. They’ll be able to get faster buy-in when more complex systems are introduced later on (see Section11). By utilizing this approach, we’ve noticed that managers can simultaneously conduct small experiments while working on putting the pieces together to create the future state that they want through reasonable action plans.

In the remainder of this paper, we’ll discuss some of the most common subsystems that often comprise a complete MDI system. Before we do that, we will describe how systems tend to emerge and evolve.

4. Think “Garden” not “Machine”
A gardener prepares the soil and conditions, plants some seeds, watches to see what happens, and acts accordingly. Someone who builds a machine (or a building, or a structure) has a blueprint or works from a roadmap while measuring progress against pre-defined milestones. Designing and adjusting an MDI system is more like being a gardener than a mechanic. An MDI system is an emergent outcome of the development and interaction of several sub-systems. We will guide the reader through some of these sub-systems in the following section.

17 Personal correspondence, Holly Prast. We also adjusted our first white paper to better represent these concepts in education – http://bit.ly/foundationsforeducation8

© Institute for Enterprise Excellence
With guidance and knowledge, systems evolve from simple to complex through experimentation. This concept is illustrated in Figure 10 and was discussed briefly in several of our white papers.18

Targeted experimentation – The initial phase will include experiments around some simple tools (tactical elements). Here is what this might look like:

- “Can we try to huddle a couple times a week to talk about how things are going?”
- “Can we use a simple white board to track how we are doing on the most important things we do and see if helps us understand our current state?”
- “Can we identify the common issues and ‘hiccups’ that keep us from getting our work done well?”

Words matter, especially in non-manufacturing settings where engineering language is not the norm. Managers and teams need to use a language that works for them. We’ve noticed that engineering terminology like: defects, standard work, problems can be barriers to getting people involved in a safe and meaningful way.

Wherever possible, make the experimentation fun and meaningful. We’ve seen great impact through experiments with ideas and metaphors that get people to think and act differently. The playfulness and appeal to whimsy create an opportunity for people to literally “play with ideas.” Experimentation requires a willingness to try to see something different and try something different.19 There is real science and research to back up this empirical observation.20

Lastly, it is also helpful to work with existing tools and methods that a team is familiar with. It is best to start with what you have and adjust the tools and methods to accomplish what is needed.

Initial integration – After some initial experimentation, it will become apparent that the various tools and tactical elements (huddles, boards, forms, etc.) are starting to connect with each other and drive repeated behaviors. The system is starting to develop, and it is driving both ideal behaviors and desired outcomes. For instance, we see the connection between our up-to-date performance board and our regular huddle discussion, which generates a method for communicating with those who were not at the huddle, as well as an up-to-date issue tracking list which everyone can see and participate in maintaining.

Functional Integration – Over time, and with constant attention and infusion of energy, the evolving sub-systems will start to connect with each other to form a complete MDI system. For instance, we can see the routines and habits related to “aligning the work” are connected to “enabling people” to “improve the work.” An example of the flow of this system is illustrated in Figure 3.

Organizational Expansion – As more work units within an organization evolve their MDI systems, it becomes possible to connect and coordinate these systems across the organization. This means that work units see how their alignment is connected to each other, how the enabling systems are supported across the organization, and improvement is addressed not just within work units but across work units.

In our experience, you cannot skip steps, and the evolution from one phase to the other is not automatic. Without constant attention and energy, entropy will take over and the system will dissolve. We discuss this in more detail in Section 12 of this paper.

19 Personal correspondence with Sarah Groux, Winneshiek Medical Center

20 Edward De Bono has several useful books on this topic. *Lateral Thinking: Creativity Step by Step, Serious Creativity*
A useful framework for understanding the science of the evolution and management of systems is the Cynefin (Ka-NEVin) Sense-Making Framework\(^1\) illustrated in Figure 1. We initially introduced this framework in our 8\(^{th}\) white paper “systems by design”\(^1\)\(^6\).

The details of this framework are beyond the scope of this paper. We encourage the reader to reference the resources available at www.cognitive-edge.com to understand the framework and the science behind it. For the purposes of our discussion here, we will illustrate the following key concepts:

1. Initial experimentation often occurs in the “complex” domain where multiple, parallel safe-to-fail experiments are conducted. These are “probes” to see if a beneficial pattern (behavior) results. If so, we “amplify” the experiment and try to encourage these patterns. If not, we “dampen” the experiment, pivot, and try something else. In our experience, many people do not stay in this phase long enough. Their impatience wants to move the efforts forward prematurely.
2. As these experiments show promise, and we gain a better idea of the cause-and-effect for this system in this organization, the effort might move to the “complicated” domain.
3. There may be a need to return to the complex domain to conduct some additional experiments.
4. At some time, for some systems, people may decide that they have identified the current best way to do certain things. Some systems and activities might find their way to the “obvious” domain. This is the realm of “standard work.” Not everything will go into this domain. Moving things here requires significant energy to maintain the desired outcomes. We’ve observed that people will move systems too quickly to this domain by going from 1-2 model areas (pilots) to spreading the system to everyone.
5. The result is that people will find themselves in the “chaotic” domain. People will logically develop work-arounds and exhibit active and passive “push-back.” The all too common “flavor of the month” phenomenon results.
6. The boundary between “obvious” and “complicated” is more like a continuum. The red arrow indicates that that there is a “back and forth” dynamic that occurs between developing the “current best way we do our work” (standard work) and the continuous improvement (PDSA) cycle.

In the next several sections we will describe some of the common subsystems that are often found in MDI systems. It is important to remember that the “system evolution” principles described in this section apply at the subsystem level. In other words, you need to evolve subsystems that help to align, enable and improve the work systems. The “systems by design” concepts described in our 8\(^{th}\) white paper\(^1\)\(^6\) can be a helpful guide (it works like scaffolding\(^2\)) to design the subsystems and to connect them together. Just like a building, as a system evolves and becomes more stable, the scaffolding is no longer needed.

We have observed that people tend to approach a problem based on the paradigm that they are most comfortable with. For instance, some people see every problem as a lack of standard work (or people not following standard work). They tend to treat every problem as if it were in the “obvious” domain. What they don’t realize is that they run the risk of overly constraining the situation, forcing people to react with work-arounds and heroic efforts. They will find themselves thrust over a cliff into the “chaotic” domain and wonder why this is the case (refer to point 6 in Figure 11). An engineer might see every problem as “complicated” and they believe that any problem can be resolved by more analysis or bringing in more expertise. Understanding what type of situation you are dealing with, and matching this with the appropriate action, is one of the most important benefits from an understanding of the Cynefin framework. We will be more likely to match our actions to the kind of problem or system we are dealing with.

© Institute for Enterprise Excellence
In the following sections, we will describe some of the more common subsystems that comprise an MDI system. As we mentioned, previously, the order for constructing (or improving) an MDI system is not critical. It makes the most sense to start where the team’s energy and interest resides and work from there.

5. Strategy Alignment

A strategy alignment sub-system helps make the connection between the work of any part of an organization to the organization’s strategies. Our eleventh white paper, “The Pracademic’s Guide to Strategy Deployment” provided guidance and advice for the “strategy” system. Figure 12 illustrates the connection point between the strategy system and the MDI system. The two-way arrow indicates that strategy deployment works primarily from left to right. Strategy alignment works primarily from right to left. At a high level, a strategy alignment subsystem answers the question “are we focusing on the right things?”

We’ll use the general framework described in our 8th white paper (Systems by Design) to provide examples of the kinds of questions and activities that might be involved in the design and improvement of this subsystem. These are provided only as guidance and examples. It will look differently from organization to organization (and even between department-to-department within an organization). These four areas describe what it means to work “on” a system:

Purpose – An example of a useful purpose statement for a strategy alignment system might be: “To ensure clear expectations of what it means to be successful in our department, and the linkage to the organization’s strategies and goals.”

Guiding Principles – Examples of the critical guiding principles that need to be kept in mind when designing and improving this sub-system might be: create constancy of purpose, create value for the customer and respect every individual. The principles that are used to guide the design and improvement of this system will likely change over time through learning and experimentation.

Ideal Behaviors – It is not possible to describe all of the ideal behaviors that you may want to see this sub-system drive, nor would it be appropriate to provide a list. There will be ideal behaviors exhibited by leaders, and by managers and by the front-line staff, and those people need to be involved in articulating what those behaviors should be. Based on our experience, we can provide some guidance and examples about what the these ideal behaviors are likely to be, as well as behaviors that are not ideal. See Table 1 below. These are not a prescription, but rather a starting point.

<table>
<thead>
<tr>
<th>What Strategy Alignment IS</th>
<th>What Strategy Alignment ISN’T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team can define what it means to be on target or not. The goals are clear and visual.</td>
<td>Teams allow everything to be a priority.</td>
</tr>
<tr>
<td>Team collectively creates daily metrics that are meaningful and simple.</td>
<td>Other lists exist that capture the ‘real’ work being done.</td>
</tr>
<tr>
<td>Team uses measures to understand performance gaps.</td>
<td>There are no clear goals or definition of metrics</td>
</tr>
<tr>
<td>Leaders and managers seek to understand and remove barriers that prevent goal achievement.</td>
<td>Being overburdened is seen as someone who is accomplishing a lot.</td>
</tr>
<tr>
<td>Team deselects actions or initiatives that might not be a strategic or operational priority.</td>
<td>Instead of having the critical few, we have the “trivial many” (e.g. metrics, initiatives, etc.).</td>
</tr>
<tr>
<td>Leaders and managers exhibit behaviors both vertically (within their areas of responsibility) and horizontally (across the organization).</td>
<td></td>
</tr>
</tbody>
</table>

© Institute for Enterprise Excellence
One ideal behavior that will be present in an MDI system is based on the important supporting concept of “going to see” (sometimes called “going to the gemba”). We cover this topic in more detail in our sixteenth white paper “leader standard work.”

Desired Outcomes – As with ideal behaviors, the desired outcomes need to be described by the team that is designing and adjusting this sub-system. When thinking about desired outcomes, it’s important to describe this at a high level – more of this, less of that. For instance: The area can identify quickly if they are winning or losing today toward their important goals. Another example might be: The area spends less time working on processes or solving problems that are not related to important goals.

Process steps, tools, triggers, measures and renewal mechanism – Referring back to our guidance in our 8th white paper, these steps entail working “in” the system and involve experimentation by those who are doing the work. Referring back to Section 4 of this paper, it is important to start simple, stay simple, experiment and expand. As a general rule, it is helpful to have 30-60 successful iterations of a process before a habit starts to develop. When stability is achieved, it is important to challenge the team to continuously improve this system. We’ve observed that the principle of “seek perfection” is too-often neglected. See additional comments in Section 10. The reader may wish to study our sixteenth white paper for more information about these elements of “working IN the system.”

6. **Visual Management**

A visual management sub-system helps everyone to see normal from abnormal relative to strategically important performance. Figure 13 illustrates that this sub-system connects to the strategy alignment sub-system. At a high level, a routine visual management subsystem answers these questions:

- “Can we see normal from abnormal relative to our strategically important performance?”
- “What do I need to know?”
- “What do I need to share?”

Purpose – An example of a useful purpose statement for a visual management sub-system might be: “Establish relevant and simple visuals to enable the area to see normal vs. abnormal conditions regarding aligned objectives – regarding the strategy alignment sub-system.”

Guiding Principles – Some examples of some of the most critical guiding principles that need to be kept in mind when designing and improving this sub-system might include: create constancy of purpose, focus on process and understand and manage variation. As we mentioned previously, the principles that are used to guide the design and improvement of any system will likely change over time through learning and experimentation.

Ideal Behaviors – As we stated previously, it is not possible to describe all of the ideal behaviors that you may want to see this sub-system drive. There will be ideal behaviors exhibited by leaders, and by managers and by the front-line staff, and those people need to be involved in articulating what those behaviors should be. Based on our experience, we can provide some guidance and examples about what the these ideal behaviors are likely to be, as well as behaviors that are not ideal. See Table 2 below.

<table>
<thead>
<tr>
<th>What Visual Management IS</th>
<th>What Visual Management ISN’T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team selects visuals that connect with aligned goals and objectives and shows gaps when off target.</td>
<td>Making everything and anything visual.</td>
</tr>
<tr>
<td>Team creates and monitors visuals that enable the area to see normal vs. abnormal conditions in their processes.</td>
<td>It is not visual clutter that does nothing to help workers improve the way work is done.</td>
</tr>
<tr>
<td>Teams demonstrate autonomy to make visuals meaningful to their environment.</td>
<td>It is not wallpaper, which goes unused and falls out of date.</td>
</tr>
<tr>
<td>Abnormal conditions are shared and escalated on a routine basis.</td>
<td>A visual that shows abnormal or normal condition – and then does not invoke a response or change of behavior due to the condition – there are no rules to the visual.</td>
</tr>
<tr>
<td>The Team can quickly identify within 3ft away and within 3 seconds if condition is normal or not without asking questions.</td>
<td>“RED” is held against others for not being on task.</td>
</tr>
<tr>
<td>Metrics that are “RED” are not seen as a threat, but rather as signals to get the process back to “stable” or to move toward improvement. Plans are quickly discussed on how to get back on target.</td>
<td></td>
</tr>
</tbody>
</table>

Desired Outcomes – As with ideal behaviors, the desired outcomes need to be described by the team that is designing and adjusting this sub-system. When thinking about desired outcomes, it’s important to describe this at a high level – more of this, less of that. For instance: more likely to be able to understand quickly if we are “on track” or “off track,” less need to explain to people through various methods, including word of mouth, regarding the status of our performance.

Process steps, tools, triggers, measures and renewal mechanism

– We will not repeat the details of this section. The reader will find that the comments from section 5 are pertinent for this subsystem as well. See notes below in the footnote regarding some advice on the use of a department scorecard.

7. **Routine Communication**

A daily routine communication sub-system helps everyone to stay current relative to the department’s performance and strategies to address gaps. Figure 14 illustrates that this sub-system helps to align as well as to enable. At a high level, a routine communication subsystem answers the questions, “Does everyone on the team know how we are performing?” and “How are we going to address our gaps?” The reader may notice that we are connecting the sub-systems with a dotted line. This is intended to show that the sub-systems are connected, eventually becoming a seamless system.

Purpose – An example of a useful purpose statement for a routine communication sub-system might be: “To establish a rhythm of clear communication regarding current performance, critical performance gaps, and how the team can try to close gaps – regarding the Strategy Alignment sub-system.”

Guiding Principles – Some examples of the most critical guiding principles that need to be kept in mind when designing and improving this sub-system might be: create constancy of purpose, respect every individual and learn continuously. As we mentioned previously, the principles that are used to guide the design and improvement of any system will likely change over time through learning and experimentation.

Ideal Behaviors – As we stated previously, it is not possible to describe all of the ideal behaviors that you may want to see this sub-system drive. There will be ideal behaviors exhibited by leaders, and by managers and by the front-line staff, and those people need to be involved in articulating what those behaviors should be. Based on our experience, we can

23 A department scorecard can work as a type of “signed contract” once strategy alignment is complete after catch ball and consensus. It captures the next level down’s “how’s” along with how it will be measured, what resources are required, and timing. Bryan Taylor, personal correspondence.

© Institute for Enterprise Excellence

11
provide some guidance and examples about what the these ideal behaviors are likely to be, as well as behaviors that are not ideal. See Table 3 below.

<table>
<thead>
<tr>
<th>What Routine Communication IS</th>
<th>What Routine Communication ISN’T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team engages in open, respectful, 2-way and interactive communication.</td>
<td>Teams attempting to solve problems during a communication huddle.</td>
</tr>
<tr>
<td>Team discusses daily issues and problems and assigns shared responsibilities to follow up with actions.</td>
<td>Shaming or blaming.</td>
</tr>
<tr>
<td>Team quickly addresses what is working and what is not working regarding the potential process and system root causes. Idea-sharing and problem-solving is handled offline in a connected system.</td>
<td>One person doing all the talking or allowing the squeakiest wheel to dominate the conversation.</td>
</tr>
<tr>
<td>Individuals and the team are recognized in a timely manner for ideal behaviors. See additional comments on recognition in Section 11.</td>
<td>Communication huddles taking a long time.</td>
</tr>
</tbody>
</table>

Desired Outcomes – As with ideal behaviors, the desired outcomes need to be described by the team that is designing and adjusting this sub-system. When thinking about desired outcomes, it’s important to describe this at a high level – more of this, less of that. For instance: more frequent connection and communication about strategy alignment, less dependence on “batching” important communications to monthly or quarterly, one-way presentations.

Process steps, tools, triggers, measures and renewal mechanism – See comments from section 5.

8. **Routine Problem-Solving**
A routine problem-solving sub-system helps everyone to signal, swarm, and solve problems related to the area’s performance on strategically important processes. Figure 15 illustrates that this sub-system helps to enable as well as to improve. At a high level, a routine problem-solving subsystem answers the questions, “Do problems related to our strategic performance re-occur?” and “Are we closing the gap?” A problem-solving system may begin as an “issue tracking and “idea sharing” system (For instance, “there’s the gap, what could we try that might address it?”). As the system matures, it moves closer to the “improve” domain as the team is more deliberate about identifying root causes first, before experimenting with countermeasures. Some additional thoughts on a routine problem-solving system can be found in this footnote.

Purpose – An example of a useful purpose statement for a routine problem-solving sub-system might be: “To establish a common language and method to approach gaps and ensure that the same problems don’t re-occur once addressed as it relates to strategically important performance.”

Guiding Principles – Some examples of some of the most critical guiding principles that need to be kept in mind when designing and improving this sub-system might be: respect every individual, focus on process, embrace scientific

24 Strategically important at the team level, not necessarily at the organization level. Personal correspondence, Ken Eakin
25 Organizations that are most successful encourage people to identify problems aka opportunities for improvement. Toyota considers the true work of the front-line teams is to improve their work daily through suggestions and the use of tools like Andon systems. Problem solving begins when people are encouraged and enabled (through tools/processes like MDI) to identify problems. Personal correspondence, Bryan Taylor.

© Institute for Enterprise Excellence
thinking and seek perfection. As we mentioned previously, the principles that are used to guide the design and improvement of any system will likely change over time through learning and experimentation.

Ideal Behaviors – As we stated previously, it is not possible to describe all of the ideal behaviors that you may want to see this sub-system drive. There will be ideal behaviors exhibited by leaders, and by managers and by the front-line staff, and those people need to be involved in articulating what those behaviors should be. Based on our experience, we can provide some guidance and examples about what these ideal behaviors are likely to be, as well as behaviors that are not ideal. See Table 4 below.

<table>
<thead>
<tr>
<th>What Routine Problem-Solving IS</th>
<th>What Routine Problem-Solving ISN’T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team swarms when abnormal conditions occur to identify follow-up actions.</td>
<td>Jumping to solutions without understanding root-cause(s) and data.</td>
</tr>
<tr>
<td>Team initiates an A3 conversation(^{26}) first – understanding the problem before experimenting on countermeasures.</td>
<td>The same problems re-occur in the future after we have already attempted to solve them.</td>
</tr>
<tr>
<td>Team uses actual data to better understand the condition.</td>
<td>Focus in on only BIG problems because that’s where all the glory and recognition is.</td>
</tr>
<tr>
<td>Team treats problems as learning opportunities to test ideas and countermeasures.</td>
<td>Focusing on people as the problem and not the process.</td>
</tr>
<tr>
<td>Teams follow a consistent method to solve.</td>
<td>Problem fixing, sometimes referred to as “solution finding.”</td>
</tr>
</tbody>
</table>

Desired Outcomes – As with ideal behaviors, the desired outcomes need to be described by the team that is designing and adjusting this sub-system. When thinking about desired outcomes, it’s important to describe this at a high level – more of this, less of that. For instance: more involvement by everyone in signaling, swarming and solving problems, less dependence the manager to be the problem-solver. In many organizations the ratio of problem finder to problem solver is 100:1. The ultimate desired outcome is to move the ratio closer to 1:1 where everyone is a problem finder and a problem solver.

Process steps, tools, triggers, measures and renewal mechanism – See comments from section 5.

9. **Standardizing Work**
A standardizing work sub-system helps everyone to come to agreement on the current best way to do agreed-upon processes. Others have defined standard work as “the single source of information for doing the work safely and effectively. For instance, in some industries, it can also be used to also capture personal protection equipment (PPE) requirements, industry regulations, etc. as that single source.\(^9\) Figure 16 illustrates that this sub-system resides primarily in the “improve” domain. At a high level, a standardization subsystem answers the question, “Are we getting our ideal behaviors and performance outcomes consistently?”

It is also important to revisit the Cynefin Sense-Making Framework (Figure 11) to understand that every work system or process may not need to be moved to the “obvious” domain (standardized). When people apply “standard work” as the answer to every problem, they overly constrain the system. They will find themselves in the “chaos” domain due to

© Institute for Enterprise Excellence
work-arounds and resistance to the standard work approach. See item #6, Figure 11. The reader will find more information by going to this link: http://bit.ly/systemsdesigncynefin

Purpose – An example of a useful purpose statement for a standardizing work sub-system might be: “To ensure systems and processes get consistent performance outcomes with ideal behavior (minimizing variation) – Establishing the best-known way of doing something today.”

Guiding Principles – Some examples of some of the most critical guiding principles that need to be kept in mind when designing and improving this sub-system might be: respect every individual, lead with humility, focus on process, quality at the source and seek perfection. As we mentioned previously, the principles that are used to guide the design and improvement of any system will likely change over time through learning and experimentation.

Ideal Behaviors – As we stated previously, it is not possible to describe all of the ideal behaviors that you may want to see this sub-system drive. There will be ideal behaviors exhibited by leaders, and by managers and by the front-line staff, and those people need to be involved in articulating what those behaviors should be. Based on our experience, we can provide some guidance and examples about what the these ideal behaviors are likely to be, as well as behaviors that are not ideal. See Table 5 below.

<table>
<thead>
<tr>
<th>What Standardizing Work IS</th>
<th>What Standardizing Work ISN’T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team can describe a clear purpose for each process and system</td>
<td>Everyone does the work in a different way</td>
</tr>
<tr>
<td>Team uses the standard as a baseline for improvement</td>
<td>Holding best practices to ourselves and not sharing with others</td>
</tr>
<tr>
<td>Standards are developed with rigor (i.e. evidence-based and data driven.)</td>
<td>Standards are rigid.</td>
</tr>
<tr>
<td>Team is constantly evolving the standards – and ensure all standards are up to date.</td>
<td>Standards are used to ‘weaponize’ against others. (E.g. “This is the standard, if you don’t follow it, you’ll be in trouble”.)</td>
</tr>
<tr>
<td>Standards are used to train others</td>
<td>We try to standardize everything.</td>
</tr>
<tr>
<td>Standards are addressed as the best-known way of doing something today.</td>
<td>Micro-managing every detail (overly-constraining).</td>
</tr>
<tr>
<td>All are involved in sharing best practices</td>
<td>Allowing common-cause variation to justify why we might ‘tamper’ with the process without understanding why the variation might be occurring.</td>
</tr>
<tr>
<td>The people who do the work develop the standard work.</td>
<td></td>
</tr>
</tbody>
</table>

Desired Outcomes – As with ideal behaviors, the desired outcomes need to be described by the team that is designing and adjusting this sub-system. When thinking about desired outcomes, it’s important to describe this at a high level – more of this, less of that. For instance: more involvement by everyone to identify the current best way to do some elements of work. Less variation in the critical work elements.

Process steps, tools, triggers, measures and renewal mechanism – See comments from section 5.

10. **Transformation Velocity and Assessing System Maturity**
In this section, we will build on some of the ideas described in Section 4 (think “garden” not “machine) by going deeper into the IEX Velocity Model (Figure 8). We are also introducing the idea of a continuum of system maturity, the science
of which is beyond the scope of this paper. We’ll address this in
more detail in a future paper. The curious reader can learn more
by going to the link in this footnote.27

As people experiment with the design of the sub-systems to build
an MDI system, their initial efforts may be with various tools.
Figure 17 illustrates what this might look like. Perhaps a team
decides to experiment with a simple visual board that shows one
or two important metrics over time. This could be a piece of
paper or a white board. Perhaps the team decides to experiment
with a regular huddle. Perhaps it is challenging for them to try
this on a daily basis, so they try twice weekly. After a few weeks,
the team decides to make a list of reoccurring issues and identify
some ideas for addressing these issues. Basically, they are practicing some simple systems that help to “align” the team’s
work to the organization, to “enable” people to understand current performance and bring forth any ideas for
“improvement.” This is what “level 1” looks like. It is important
to note that the team is applying even attention to all 3 domains
of the model. If they focus on only one domain (for instance,
“improve”) they will not be successful. Velocity requires
balanced attention to all 3 domains.

If the team can achieve roughly 30-60 successful iterations
of practice at this level, they will have started to develop a habit.28
They are ready to move to level 2. Understanding the need to
move to the next level is an important step and, in our
experience, is all too often missed. Leaders and managers who
understand the principle of “seek perfection” (not “expect” or
“demand” perfection) realize that everything can and should be
studied for improvement. This is different than the prevailing
mindset of “good enough” which can be described as fire-fighting management. When multiple fires are burning,
management is inclined to get the biggest fire just barely under control then move to the next biggest fire. They do this
without putting a system in place to enable the appropriate team to both prevent and respond to the next fire on their
own.7

In our experience, we’ve observed many teams (and organizations) stay at level 1 maturity. Without the attention of the
gardener (discussed in Section 4) these simple sub-systems will not be sustained. They will go by the wayside when
leaders and managers have not attended to their leader standard work, or when a new manager comes on board, or
when some company initiative sucks away the necessary energy and attention. We elaborate on this in Section 12.

Figure 18 illustrates what level 2 might look like. A team would continue to experiment with their initial sub-systems.
They might add an additional sub-system. Level 2 means we are starting to see these various tools beginning to form a
system as people see how the tools “fit together” to support each other. For instance, the metric board is updated on a
regular basis, and people are starting to make notes on the board about potential causes for the gaps in performance.
Perhaps the frequency of the huddle moves from twice weekly to every other day. Level 2 means the habits (ideal
behaviors) are become more frequent, the duration is longer, and the intensity is increasing. Again, with roughly 30-60
successful iterations at this level, the team is ready to move to Level 3.

Before we move on to that level, there are two basic ways that a team can find themselves at level 2:
1) The team has created some structure and has described how they want the sub-systems to work (who does what,
how, when), but not everyone is following along.
2) The team has created the structure, but the system is still largely dependent on the manager’s presence.

Figure 19 illustrates what level 3 might look like. The team continues to experiment and challenge themselves to design and redesign the sub-systems so that they work for them. The team is taking stronger ownership, which brings us to a key aspect of level 3 maturity. The team is not dependent on the manager to carry out the necessary activities. For instance, the responsibility for updating the metric board is rotated among willing volunteers. The huddle has moved to a daily cadence and is carried out regardless of whether the manager is there or not.

Movement to level 4 and to level 5 continues accordingly. Level 4 means that we see a smooth and seamless connection between the sub-systems. This starts to just become the way we do our work and improving the work is seen as part everyone’s job. Level 4 maturity means that ideal behaviors are present within a team, or department, or area. Level 5 means that this has become the way that we manage and improve in every part of the organization. It becomes “enterprise excellence.” Level 5 is an ideal that may never be achieved but is something people are always striving for.

Before we move to the final section, we should bring this conversation from theory to actual practice. First, these sub-systems do not automatically move in tandem to (nor stay at) the next level. Figure 20 illustrates that variation occurs and the system requires continuous attention and energy to be sustained and to move to the next level. The reader may also see this illustrated in Figure 6. Second, people can get hung up on the numbers. Putting a number to anything also drives behaviors, and not always the ideal behaviors that you want to drive. The important point is not “what’s my number?” but “what’s our current state?” and “what can we do to move us to the next level?”

11. Additional Sub-Systems for Consideration
In this paper we described some of the most common sub-systems that are seen in MDI systems. There are many components (additional sub-systems) that can be designed and improved to add to an MDI system. Here are some examples:

Voice of the customer – Every department or work unit in any organization has one or more customers that are the recipients of their work. As managers continue to guide the maturity of their MDI system, the viewpoint and voice of these customers become a strong aligning force. This might begin as a list of key customers, followed by some discussions with those customers about what their needs are, and how well the department is meeting those needs. Turning these activities into a system requires making this process a regular, hard-wired, routine.

Recognition - In our experience, the recognition system is one of the key systems that needs to be adjusted in order to help evolve the organization’s culture in the desired direction. The question that needs to be asked is, “what behaviors do we want to recognize?” If the answer is “fire-fighting, work-arounds and heroic efforts” then this is what will be perpetuated. This becomes the culture. If the answer is “signaling problems, solving problems, asking questions, experimenting, sharing knowledge, celebrating risk-taking,” then this will become the organization’s culture.

Training and education - Even though we often see these two words combined together into a system descriptor, it is important to understand that “training” is directed toward improving a skill, “education” is focused on personal
development. Dr. Deming was clear on this when he articulated his “14 principles for transformation for Western management.” Point 6 is “institute training on the job” and Point 13 is “Institute a vigorous program of education and self-improvement.”

Coaching – In our experience, nearly every organization sees the benefit of a coaching activity or system in order to help to enable people to do the work and also help people to improve the work. We’ve seen this in various forms. Sometimes it is more strongly associated with the MDI system, and other times it is connected more strongly with leader standard work. Good coaching is also a type of “scaffolding” that helps to guide people toward improvement.

Waste Identification – Teaching people to identify and remove non-value-added activity is a common activity in organizations that wish to create a culture of continuous improvement. A common method is to teach and practice waste identification by categorizing the various types by use of a handy acronym such as TIMWOOD:

T – Transport - Waste in transportation includes movement of people, tools, inventory, equipment, or products further than necessary.
I – Inventory - Having more inventory than necessary to sustain a steady flow of work can lead to problems including: product defects or damage materials, greater lead time in the production process, an inefficient allocation of capital, and problems being hidden away in the inventory.
M – Motion - The waste in motion includes any unnecessary movement of people, equipment, or machinery.
W – Waiting - The waste of waiting includes: 1) people waiting on material or equipment and 2) idle equipment. Waiting time is often caused by unevenness in the production stations and can result in excess inventory and overproduction.
O – Overproduction - Overproduction occurs when manufacturing a product or an element of the product before it is being asked for or required. It may be tempting to produce as many products as possible when there is idle worker or equipment time.
O – Over-processing - Over-processing refers to doing more work, adding more components, or having more steps in a product or service than what is required by the customer.
D – Defects - Defects occur when the product or service is not fit for use. This typically results in either reworking or scrapping the product. Both results are wasteful as they add additional costs to the operations without delivering any value to the customer.

Too often, this is an activity that is introduced in a training session (or part of an improvement event) but it does not become a part of an on-going system of improvement. We’ve observed some organizations designing this into their MDI system through routine “waste walks” or making the acronym a part of their issue tracking system.

Value stream analysis and improvement – In Section 1 of this paper, we described the “improvement event” is often a common starting point for organizations that wish to learn about and pursue the creation of a culture of continuous improvement. One common part of an event is the idea of looking at a process with a value stream view. This often includes identifying the value added and non-value-added steps in the process. We’ve observed that some organizations return to this viewpoint after their managing for daily improvement system becomes more mature.

Problem Escalation – Not all problems can be addressed locally. Teams will often create a sub-system that escalates these issues to those who can better address them. This might include transferring a problem to someone else’s problem-solving system (a leader or another team).

Process Observation – When teams agree that they need to standardize the work, it is often helpful to build a system that helps them to create an auditing process. Some refer to this as process observation or a kamishibai system. Some teams view process observation as part of the standardizing work sub-system.

29 Out of the Crisis, W. Edwards Deming
30 The reader may benefit from this webinar recording featuring Dr. Sami Bahri, D.D.S. (the first lean dentist)
© Institute for Enterprise Excellence
Five S’s
Introducing people to a 5S system is common in many organizations that wish to create a culture of continuous improvement. This method is often viewed as a method to keep a work-place in good order, to minimize time wasted looking for things. Although some see this as a “housekeeping” system, its real purpose is most strongly connected to the guiding principle of “flow and pull value.”
The purpose is to be able to recognize normal from abnormal quickly, then to isolate and work on the abnormal. We’ve seen the 5 S’s used as short-hand for 1) Sort, 2) Set in Order, 3) Sweep (clean), 4) Standardize and 5) Sustain. Some organizations have added a sixth S for “safety.”

12. Roles and Responsibilities Over Time (A connection to Leader Standard Work)
This final section will serve as a transition to our sixteenth white paper – Leader Standard Work - the Personal Management System. Figure 21 illustrates how the MDI system requires a shift in roles and responsibilities from management to the front-line staff. In many organizations, the burden for aligning to strategy, communication, problem-solving and standardizing the work falls squarely on the shoulders of management.

The left-hand side of Figure 21 shows how this transition occurs over time “in theory.” The right-hand side illustrates that this path is not so straight.

Figure 22 is a close-up of the right-hand side of Figure 21. The downward arrows (dotted lines) illustrate that there is no guarantee that there will be a return to an upward path. Transformation to a new style of management requires an on-going and constant infusion of energy and attention in order to overcome entropy and a return to the status quo. Where does this energy and attention come from? The answer to that question is discussed in our sixteenth white paper “Leader Standard Work – the Personal Management System.”

IV. Summary
Our eleventh white paper “Pracademic’s Guide to Strategy Deployment” described the key system that helps leaders devote time and energy to prepare the organization for the future. In this paper, we describe another system – the “managing for daily improvement” system that attends to the daily system for providing value to the customer (both internal and external) and to carry out the daily improvement activities necessary. Systems evolve over time through constant attention and energy. The process is more like overseeing a “garden” and less like managing a “machine.”

Our sixteenth white paper focuses on the leader standard work (also known as the “personal” management) system. Perhaps the reader can already sense that the health of a “managing for daily improvement” can only be sustained and improved through the active attention of leaders and managers. Just like a garden, it will not tend itself.

In this paper we described some of the key concepts and provided some beginning guidance to any manager who wishes to create or improve a managing for daily improvement system with their team.

© Institute for Enterprise Excellence
Our White Paper Series:

Our first White Paper “Foundations for Transformation: Linking Purpose, People and Process”\(^1\) describes the common patterns that we have observed as executives and managers have attempted to create a culture of continuous improvement in their organization. Many find themselves trapped in a cycle of “program of the month” approaches that never seem to produce the sustainable transformation of management that is necessary. However, there are some who desire to break away from this pattern and wish to switch the direction of their efforts by understanding the power of purpose, as well as learning and practicing new principles of management. We also wrote a version of this paper with language that relates to application of the principles to education.\(^17\)

Our second White Paper “Evolving World View: Implications for All Industries, Including Healthcare”\(^18\) describes the sources of knowledge that will be needed in order to manage effectively in the twenty-first century. We described how the world view is changing from the “machine age” mindset that has driven the traditional “plan, command and control” approach, to a “systems view.” We explained the evolution of thinking that is the foundation for the principles of enterprise excellence.

Our third White Paper “Practical Wisdom for Addressing Problems”\(^33\) describes the practical benefits of understanding the difference between convergent and divergent problems, including what we can reasonably expect from ourselves and from others when attempting to address the important problems of management. The tendency for most executives and managers is to look to recipes and formulas to tell us what to do – a prescription for how to deploy a lean management system. There is no recipe, formula or prescriptions. But there is knowledge that can guide our actions.

Our fourth paper “One Approach to Deploying a Purpose and Principle-Driven Transformation”\(^14\) shares our current thinking about “deploying a cultural transformation” based on the knowledge and contributions of many thought leaders, as well as observing patterns in organizations from many industries that are attempting and succeeding at a cultural and management transformation.

Our fifth paper “Principles for Personal and Organizational Transformation – Align”\(^15\) describes the principles behind the IEX model, specifically those principles primarily focused on aligning the improvement efforts so that individuals can have a clear “line of sight” between the work they do every day and how it connects to and supports the organization’s purpose.

Our sixth paper “Principles for Personal and Organizational Transformation – Enable”\(^15\) describes the principles behind the IEX model, specifically those principles primarily focused on enabling people to be engaged in and improve their work systems.

Our seventh paper “Principles for Personal and Organizational Transformation – Improve”\(^15\) describes the principles behind the IEX model, specifically those principles primarily focused on improving the work.

Our eighth paper “Systems By Design”\(^16\) describes the importance of design and redesign of key systems, in particular supporting systems of alignment, enabling and improvement. We describe a method, including a “system standard” that can help any executive and manager design and redesign key systems that will help them contribute to their organization’s purpose.

Our ninth paper “True, True North”\(^34\) describes the benefits of more fully understanding True, True North and how this can avoid the trap of the narrow definition of True North only as measures. Without this understanding, the pursuit of true north can merely be “management by results” in disguise.

© Institute for Enterprise Excellence
Our tenth paper “Side (by Side) Management” describes a more useful view of the traditional hierarchy model, and the implications for connecting strategy deployment to daily management in order to provide value to customers, as well as facilitating true knowledge creation in the organization.

Our eleventh paper “A Pracademic’s Guide to Strategy Deployment” describes some history of strategy deployment, and proposed definitions, as well as ten lessons that we have learned about the idea of strategy deployment, as well as a strategy deployment system.

Our twelfth white paper “Understanding and Application of Dr. Deming’s System of Profound Knowledge in Healthcare” is a reprint of a presentation from the 2014 Deming Research Symposium.

Our thirteenth white paper “Understanding and Misunderstanding Variation in Healthcare” is a reprint of a presentation from the 2015 Deming Research Symposium.

Our fourteenth white paper “Performance Evaluation – How is this still a thing?” is a reprint of a draft proposal for the 2016 Deming Research Symposium.

Our fifteenth white paper “Managing for Daily Improvement” describes one of three primary systems that organizations often create in order to build a sustainable culture of continuous improvement based on the guiding principles of enterprise excellence.

Our sixteenth white paper “Leader Standard Work – A Personal Management System” describes how any manager can create and improve a system that helps them to connect their daily work to the strategies of the organization and to the daily improvement system for which they may also be responsible for.

The Institute for Enterprise Excellence

The Institute for Enterprise Excellence (IEX) was established in 2013 as a research, education and coaching institution that focuses on helping organizations build principle-based architecture to achieve world-class results.

We bring purpose to life by advancing the use of practical application of principles, systems and tools in pursuit of enterprise excellence.

What differentiates us is our Principle-based Deployment Model, the culmination of many years of application experience and continuous research in the field of behavior and performance.

Jacob Raymer
President & Founding Partner
Jacob-raymer@instituteforexcellence.org

Mike Stoecklein
Partner
Mike.stoecklein@instituteforexcellence.org

Max Brown
Partner
Max.brown@instituteforexcellence.org

37 http://bit.ly/PerfEvalStillaThing2

© Institute for Enterprise Excellence